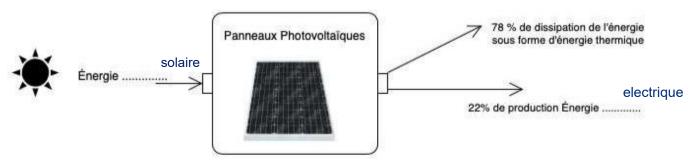
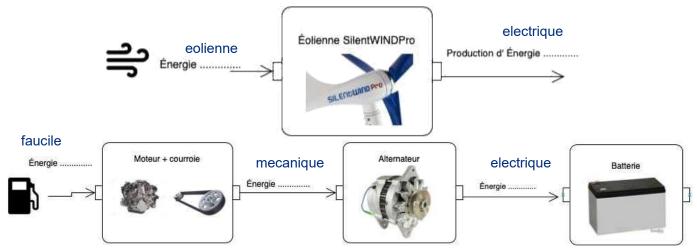
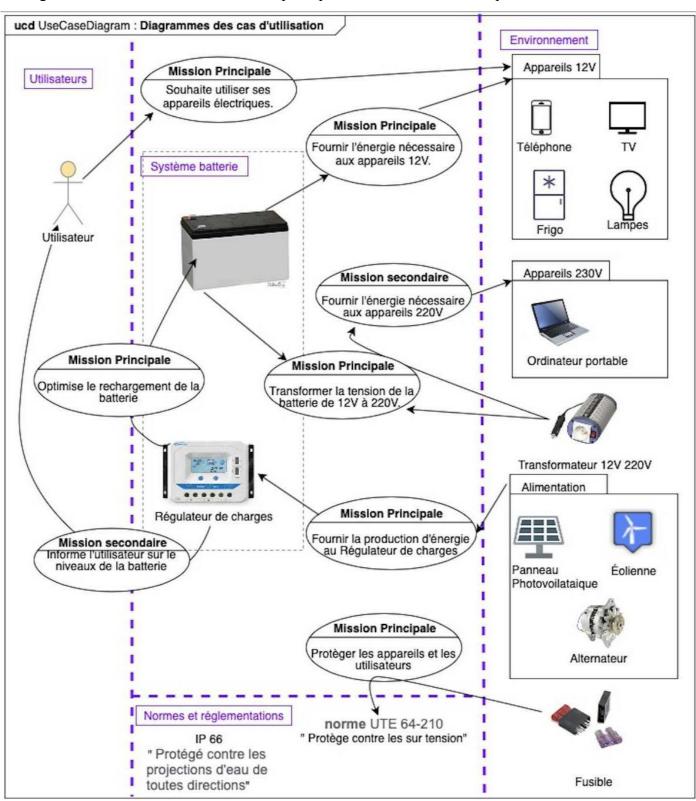


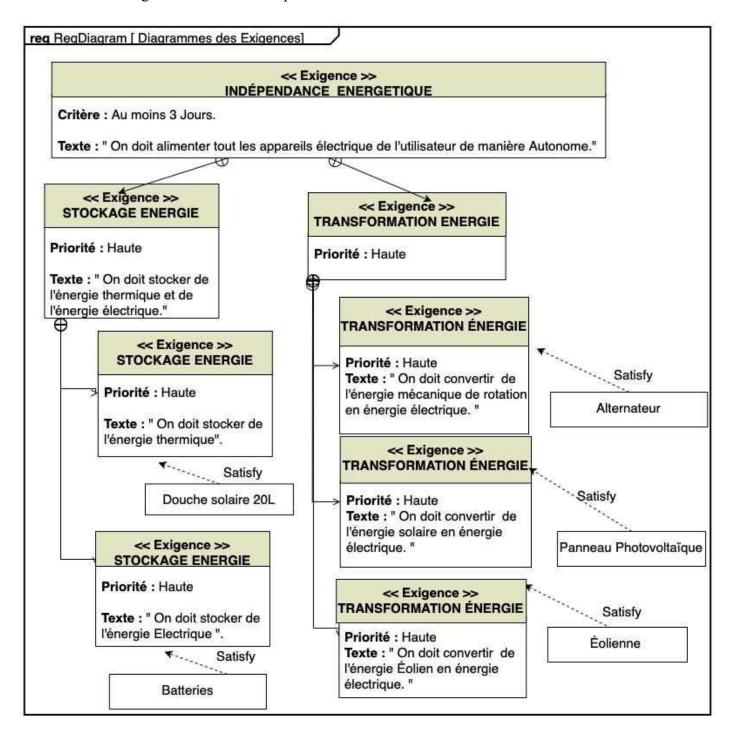
Objectifs:


Rendre autonome en électricité pendant 3 jours un Van aménagé.

Cahier des charges:


Le diagramme de contexte ci-dessous présente l'ensemble des dispositifs énergétiques du Van aménagé. Il représente l'environnement du Van et les interactions entre les différents éléments.


Indique pour ces 3 éléments les flux d'énergie en entrée et en sortie :

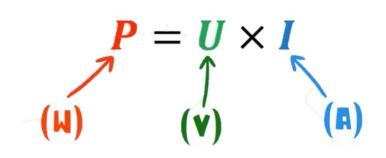


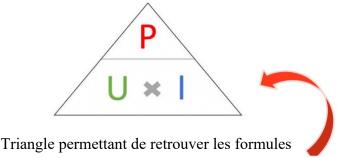
<u>Remarque</u>: Les panneaux solaires chauffent énormément c'est pourquoi les concepteurs de panneaux ont développé un autre type de panneaux qui consiste à produire de l'électricité et chauffer l'eau chaude de la maison en récupérant la dissipation d'énergie sous forme de chaleur.

Le diagramme ci-dessous détail les mission principales et secondaires de chaque éléments :

Apports de connaissance sur l'électricité :

Un dipôle est un mot utilisé en électricité pour désigner un appareil électrique.


Puissance, Tension et Intensité:

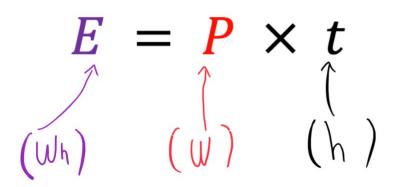

La Puissance électrique reçue ou fournit par un dipôle se note P et s'exprime en Watt notée W.

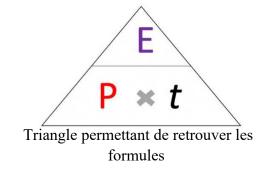
La Tension aux bornes d'un dipôle se note U et s'exprime en Volt notée V.

L'Intensité du courant qui traverse le dipôle se note I et s'exprime en Ampère notée A.

La relation qui lie ces trois grandeurs est la suivante :

Vidéo expliquant la formule et l'utilisation de l'outils triangle


Relation entre Puissance et Énergie :


L'Énergie consommée ou produite par un dipôle durant une durée se note ${\bf E}$ et s'exprime en Watt heure notée Wh.

La Puissance électrique reçue ou fournit par un dipôle se note ${f P}$ et s'exprime en Watt notée W.

La durée durant laquelle le dipôle à fonctionné se note \boldsymbol{t} et s'exprime en Heure notée h.

La relation permettant de calculer l'énergie à partir de la puissance et de la durée de fonctionnement est la suivante :

Dimensionnement de la consommation journalière :

Exemple de la glacière 12V:

Calculer l'intensité du courant en fonctionnement 12V?

Calculer l'énergie consommée sur la glacière durant 1 journée ?

 $E_{glacière} = P_{glacière} \times t$

Attention! Le temps t s'exprime en heure

On sait que la glacière fonctionne 5 minutes par heure et qu'une journée dure 24h Calcul annexe du t :

 $E_{glaci\`{e}re} =$

Donnée techniques :

Alimentation : 12V / 220V Consommation : 35 Watt

Volume: 40 L

Durée de fonctionnement par heure : 5 minutes

Astuce pour transformer une durée de minutes en heures :

 $t_{[minutes]} \rightarrow t_{[heures]}$

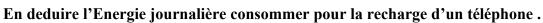
$$t_{[heures]} = \frac{t_{[minutes]}}{60}$$

La recharge du téléphone :

Regarder les informations indiquées sur votre chargeur de téléphone (sinon prendre celle-ci).

Quelle est la tension en sortie de votre chargeur?

U téléphone =


Quelle intensité de courant électrique est fournis au téléphone ?

 $I_{\text{t\'el\'ephone}} =$

Quelle est la puissance délivrée par votre chargeur ?

Pour la suite de l'activité nous estimerons que le téléphone est recharger en 1h15 min soit 1,25h.

La recharge d'un ordinateur portable :

Regarder les informations indiquées sur votre chargeur d'ordinateur portable (sinon prendre celle-ci) .

Quelle est la tension en sortie de votre chargeur ?

Quelle intensité de courant électrique est fournis à l'ordinateur ?

I ordinateur =

Retrouver par le calcul la valeur annoncé par le constructeur (+/- 5w près) des 45,912 W?

P_{ordinateur}=

Pour la suite de l'activité nous estimerons qu'il suffit de 1h00min soit 1h pour recharger l'ordinateur.

En deduire la consommation d'énergie journalière pour la recharge d'un téléphone.

La consomation de la télévision 12V 24" pouces :

A partir des informations ci-dessus déterminer l'intensité du courant founis à la télé ?

I télévision allumée =

I télévision éteinte =

Déterminer l'Énergie consommer par la télévision :

E P * t	Puissance	Durée / Jour :	Énergie consommée / Jour
Tv Allumée	19W	1,5h	wh
Tv veille	0,5W	22,5h	wh

En déduire l'Énergie consommer par la Tv (ETV_allumé + ETV_veille)?

La consomation des lampes :

Le véhicules est équipé de 4 ampoules de 3W chacune. Elles sont allumé 4h par jours

Déterminer l'energie consommer par les lampes en une journée ?

Vérification de l'autonomie de 3 jours :

Tu peux reporter tes consommations journalière dans ce tableaux pour t'aider :

E _{Glacière}	E _{Téléphone}	Eordinateur	ETélévision	E _{Lampe}

Calculer la consommation d'énergie totale journalière pour tous les appareils :

$$\mathbf{E}_{total} =$$

Indication sur la batterie :

114€65

Batterie décharge lente Power Battery 12v 110ah

La batterie est une 110ah Elle délivre une tension de 12v

En théorie:

$$E_{Batterie_{Th\acute{e}orique}} = 110 \times 12 = 1320 Wh$$

Toute fois le constructeur préconise de pas décharger à plus de 50% la batterie pour ne pas détériorer la batterie.

Vous prendrez donc comme valeur:

$$E_{Batterie} = \frac{1320}{2} = 660 Wh$$

En déduire l'autonomie électrique de l'installation :

$$Autonomie = \frac{E_{Batterie}}{E_{Total}} = jours$$

L'installation est elle suffisante pour satisfaire l'exigences de 3 jours d'autonomie ?

